Enrollment No: ____

_____Exam Seat No: _____

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Mathematical Methods-II

Subject Code: 5SC0	4MAM1	Branch: M.Sc. (Mathematics)	
Semester: 4	Date: 08/05/2018	Time:10:30 To 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the following questions	(07)
	a.	Prove that the shortest distance between two points in a plane is a straight line.	(02)
	b.	Derive the second form of Euler's equation.	(02)
	c.	Find the extremals of $I[y(x)] = \int_{x_0}^{x_1} (16y^2 - y''^2 + x^2) dx.$	(02)
	d.	Define: Integro-Differential equation.	(01)
Q-2		Attempt all questions	(14)
	a.	Prove that if the functional $I[y(x)] = \int_{x_1}^{x_2} f(x, y, y') dx$ has the extremum value,	(06)
		then the integrand f satisfies the Euler's equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0.$	
	b.	Find the curve passing through the points $A(x_1, y_1)$ and $B(x_2, y_2)$ which when rotated about the x-axis gives a minimum surface area.	(05)
	c.	Prove that the extremal of the isoperimetric problem $I[y(x)] = \int_1^4 y'^2 dx$,	(03)
		$y(1) = 3$, $y(4) = 12$, subject to the condition $\int_{1}^{4} y dx = 36$.	
		OR	
Q-2		Attempt all questions	(14)
	a.	Find the geodesics on a right circular cylinder of radius a.	(06)
	b.	Find the plane curve of fixed perimeter and maximum area.	(05)
	c.	Show that the functional $I[x(t), y(t)] = \int_0^1 (x'^2 + y'^2) dt$ with $x(0) = 0$,	(03)
		y(0) = 1, x(1) = 1.5, y(1) = 2 is stationary for $x(t) = 1.5t$ and $y(t) = t + 1$.	
Q-3		Attempt all questions	(14)
	a.	State Leibniz's rule. Prove that	(08)
		$\int_{a}^{x} \int_{a}^{x_{n}} \dots \int_{a}^{x_{2}} f(x_{1}) dx_{1} dx_{2} \dots dx_{n} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt$	

	b.	Find the extremals of the functional $\int_0^{\pi/2} (y''^2 - y^2 + x^2) dx$ that satisfying the	(06)
		conditions $y(0) = 1, y'(0) = 0, y\left(\frac{\pi}{2}\right) = 0, y'\left(\frac{\pi}{2}\right) = -1.$	
		OR (2)	
Q-3		Attempt all questions	(14)
	a.	Find the integral equation corresponding to the boundary value problem	(08)
	h	$6y (x) - 4y (x) + y(x) = 4\cos(2x), y(0) = -1, y'(0) = 4.$	(06)
	υ.	Find the extremals of the functional $I[x(t), y(t)] = \int_0^1 (x y + 2x^2 + 2y^2) dt$	(00)
		with $x(0) = y(0) = 0$, $x(\pi/4) = y(\pi/4) = 1$.	
0-4		$SECTION - \Pi$	(07)
V- 4	a.	State Fredholm integral theorem.	(07) (02)
	b.	Find the eigenvalue and corresponding eigenfunction of $y(x) = \lambda \int_{-\infty}^{1} e^{x+t} y(t) dt$	(02)
	c.	Prove that if $v_1(x)$ and $v_2(x)$ are solutions of the homogeneous Fredhom integral	(02)
		equation $v(x) = \lambda \int_{a}^{b} K(x,t)v(t)dt$ then $v(x) = \alpha v_1(x) + \beta v_2(x)$ is also a	~ /
		solution, where α and β are arbitrary constants.	
	d.	Define:Degenerate kernel.	(01)
Q-5		Attempt all questions $(1 - 2)$	(14)
	а.	Solve the integro-differential equation $y = 3 \int_0^{\infty} \cos 2(x - t) y(t) dt + 2$, where	(07)
	h	y(0) = 1.	(04)
	D.	Show that $y(x) = xe^{x}$ is a solution of $y(x) = \sin x + 2 \int_{0} \cos(x - t)y(t) dt$.	(04)
	c.	State Chebysnev differential equation and reduce it to Strum-Liouville equation.	(03)
Q-5		Attempt all questions	(14)
-	a.	Discuss the eigenvalues and corresponding eigenfunctions for the integral	(07)
		equation $y(x) = F(x) + \lambda \int_0^1 (1 - 3xt)y(t)dt$	
	b.	Solve the Abel's integral equation $\int_{0}^{x} \frac{y(t)}{t^{1}} dt = x(x+1)$.	(04)
		$(x-t)^{\frac{1}{3}}$	(02)
	c.	Solve the integral equations $y(x) = 3 \sin x + \int_0^{\infty} (x - t)y(t) dt$.	(03)
0.6		Attempt all questions	(14)
Q-0	a.	Find the eigenvalues and the corresponding eigenfunctions of the differential	(14)
		equation $y'' + \lambda y = 0$ on the interval $[0, \pi]$ with the boundary conditions	(0.)
		$y'(0) = 0$ and $y(\pi) = 0$.	
	b.	Reduce the differential equation $xy'' + \alpha y' + k^2 xy = 0$ into Bessel's differential	(07)
		equation taking $y = x^n z$.	
Q-6		Attempt all questions	(14)
•	a.	Reduce the differential equation $xy'' + 5y' + xy = 0$ into Bessel's differential	(07)
		equation taking $x^2y = z$ and reduce it to Sturm-Liouville differential equation.	
	b.	Solve the integral equation $y(x) = x + \lambda \int_0^1 (1 + x + t)y(t) dt$.	(07)

